Физика - Поурочные планы к учебникам Мякишева Г. Я. и Касьянова В. А. 11 класс
Опытное определение скорости света - Световые волны - Оптика
Цель: познакомить учащихся со способами нахождения скорости света.
Ход урока
I. Организационный момент
II. Повторение
- Какова природа света?
- Кто придерживался корпускулярной теории света?
- Кто придерживался волновой теории света?
- Что изучает оптика?
- Какие разделы оптики вы знаете?
- Что изучает геометрическая оптика?
III. Изучение нового материала
Одна из первых попыток по измерению скорости света принадлежит Г. Галилею. На вершинах двух холмов на расстоянии 1,5 км друг от друга находились наблюдатели с фонарями. Первый подавал сигналы другому наблюдателю, который, увидев свет, посылал своим фонарем сигналы обратно. Промежуток времени между посылками и приемами сигналов первый наблюдатель измерял по числу ударов пульса. Время получалось конечным, но очень малым. Но Галилей понял, что задержка ответного сигнала связана со скоростью реакции мышечной системы человека, а не с конечной скоростью света. Попытка не завершилась успехом, потому что во времена Г. Галилея не было способов измерения малых промежутков времени.
Схема, предложенная Галилеем, в своей принципиальной части совпадает со всеми последующими прямыми измерениями скорости распространения света.
Ремер, первый в истории науки, определил скорость света. В 1676 г. Ремер был астрономом, и его успех объясняется именно тем, что проходимые светом расстояния, были очень велики. Это расстояния между планетами солнечной системы.
Он наблюдал затмение спутников Юпитера. Юпитер имеет множество (восемнадцать) спутников. Объектом изучения Ремера стал спутник Ио. Он видел, как спутник проходил перед планетой, а затем уходил в ее тень. После появлялся, как будто «зажглась лампа». Промежуток оказался равным 42 ч 28 мин. В начале измерения проводились, когда расстояние между Землей и Юпитером было максимальным. Затем через полгода, когда Земля удалялась от Юпитера на диаметр своей орбиты. Спутник опаздывал появляться на 22 мин. Зная расстояние, которое вызвало опоздание (диаметр орбиты Земли), можно было рассчитать скорость света.
Скорость оказалась очень большой - 215 000 км/с. Эти результаты обладают малой точностью, вследствие неточного знания радиуса орбиты Земли. Такая большая скорость не дает возможности установить время распространения между двумя точками на Земле в экспериментах Галилея.
Открытие Ремера подтвердило учение Коперника о движении Земли. Он первым доказал, что скорость света велика, но все же конечна.
В 1849 г. Физо впервые определил скорость света лабораторным методом.
В его опытах свет падал от источника на полупрозрачную пластину. Предварительно свет проходил через линзу. После отражения от пластины направлялся на быстро вращающееся колесо, которое имело зубья. Пройдя между зубьями, свет достигал зеркала, которое находилось в нескольких километрах от колеса. Отразившись от зеркала, свет, прежде чем попасть в глаз наблюдателя, должен был опять пройти между зубьями. Когда колесо вращалось медленно, свет отраженный от зеркала, был виден. При увеличении скорости колеса он постепенно исчезал. Почему?
Когда свет, прошедший между двумя зубцами, шел до зеркала и обратно, колесо успевало повернуться так, что на место прорези вставал зубец и свет переставал быть видимым. При дальнейшем увеличении скорости вращения свет опять становился видимым. За время путешествия света до зеркала и обратно колесо успевало повернуться настолько, что на место прежней прорези вставала уже новая прорезь. Зная это время и расстояние между колесом и зеркалом, можно определить скорость света. В опыте Физо скорость света получилась 313 000 км/с.
Было разработано множество других, более точных лабораторных методов измерения скорости света. Была измерена скорость света в различных прозрачных веществах. Скорость света в воде была измерена в 1856 г. Она оказалась в 4/3 раза меньше скорости света в вакууме.
По современным данным, скорость света в вакууме равна 299 792 458 м/с. Ошибка в измерениях не превышает 0,3 м/с. Более точные методы основаны не на измерении времени, а на измерении частоты и длины электромагнитной волны.
В 1983 г. на заседании Генеральной конференции мер и весов было принято новое определение метра: «Метр есть длина пути, пройденного светом в вакууме в течение временного интервала, равного с». Из этого следует, что скорость света принимается точно равной 299 792 458 м/с. Это сделано для того, чтобы каждый раз не менять определение метра по мере увеличения точности измерения расстояния.
(Учитель демонстрирует классу схему опытов Ремера, Физо, Майкельсона.)
III. Закрепление материала
- Чему приблизительно равна скорость света в вакууме?
- Объясните методы определения скорости света Ремера, Физо и Майкельсона.
IV. Подведение итогов урока
Домашнее задание
п. 59.
Р - 1005; Р - 1000; Р - 1007.
Дополнительный материал
Биография и деятельность ученого
Олаф (Оле) Ремер родился в местечке Ааргузе в Ютландии 25 сентября 1644 г. в семье не очень удачливого купца. Начальное образование мальчик получил в местной соборной школе, а с 1662 г. продолжил учебу в Копенгагенском университете. Сначала он изучал медицину, а затем стал учеником Эразма Бартолина, под руководством которого занялся физикой и астрономией. Отношения ученика и учителя были весьма близкими: Оле жил в доме Бартолина, а через некоторое время стал его зятем.
К тому времени, когда Пикар прибыл в Данию, обсерватория Браге была почти полностью разрушена. Тем не менее, с помощью искусных помощников Пикару удалось провести запланированные наблюдения. На французского астронома, по-видимому, произвели большое впечатление энергия и способности молодого датчанина. В 1671 г. Пикар решил пригласить его во Францию для работы в Парижской обсерватории. Ремер принял приглашение Пикара. После переезда в Париж, кроме непосредственных обязанностей сотрудника обсерватории, на него возлагается еще одно ответственное поручение - обучение математике наследника французского престола. Но этим не ограничивается деятельность Ремера. В Париже он занимается разнообразными инженерными проблемами, в частности, участвует в устройстве фонтанов в Версале и Марли. В области астрономии получают известность изобретенные им планисферы - модели, с помощью которых можно было проследить за движением одного небесного тела вокруг другого; планисфера Юпитера (Йовилабиум) сыграла значительную роль в определении нерегулярностей в видимых движениях спутников Юпитера. Одним словом, в Париже Ремер сразу приступил к активной научной работе. Будучи сотрудником Кассини, он неизбежно занялся решением задач, интересовавших руководителя обсерватории. Проанализировав результаты многолетних наблюдений, датский астроном в сентябре 1676 г. выступил перед членами Парижской Академии наук с докладом, в котором предсказал, что затмение первого спутника Юпитера, которое должно было по расчетам произойти 9 ноября того же года в 5 ч. 25 мин. 45 с, в действительности будет наблюдаться на десять минут позже. Это запаздывание он объяснил конечностью скорости распространения света: по мнению Ремера, свету необходимо около 22 минут, чтобы пройти расстояние, равное диаметру земной орбиты. Наблюдение ноябрьского затмения блестяще подтвердило предсказание ученого. Это дало ему возможность выступить 21 ноября того же года с докладом о своих наблюдениях и выводах из них. В декабре изложение доклада было напечатано в «Журнале ученых» - первом в истории периодическом научном издании, выходившем в Париже. Летом 1677 г. перевод работы Ремера был опубликован в «Философских трудах» Лондонского Королевского общества.
Нахождение Ремера во Франции осложнялось двумя факторами. Во-первых, формально он не был членом Парижской Академии наук (он стал ее иностранным членом лишь в 1699 г., в один год с Ньютоном). Во-вторых, Ремер был протестантом. Его пребывание в католической Франции терпели, пока действовал так называемый Нантский эдикт, подписанный королем Франции Генрихом IV в 1598 г. и регламентировавший взаимоотношения протестантов и католиков. В конце 70-х годов XVII века политическая и религиозная обстановка во Франции стала меняться, вследствие чего положение ученых-протестантов перестало быть прочным, и они стали покидать страну. Даже такому выдающемуся ученому как Гюйгенс, одному из первых членов Парижской Академии наук и ее фактическому руководителю, пришлось уехать на родину, в Голландию. Ремер не стал дожидаться отмены Нантского эдикта (1685 г.) и в 1681 г. вернулся в Копенгаген, где ему давно предлагали кафедру математики и звание профессора столичного университета. В дальнейшем судьба Ремера складывалась весьма необычно.
Вскоре после возвращения ученого на родину (1681 г.) датский король Христиан V назначил его королевским астрономом. Благодаря этому Ремер получил возможность пользоваться обсерваторией, располагавшейся в Круглой башне и основанной в первой половине XVII в. Король вскоре понял, насколько сведущий в технике человек находится у него на службе, и на Ремера посыпался поток назначений. По поручению короля он выполнял множество поручений инженерного характера (был смотрителем дорог королевства, занимался вопросами строительства портов и т. д.).
Но Ремер был не только прекрасным астрономом и инженером, он, по- видимому, обладал незаурядными организаторскими способностями. Он разработал новую систему налогообложения, работал в нескольких государственных ведомствах, в том числе был мэром Копенгагена в 1705 г. Видимо благодаря этим способностям Фредерик IV, сменивший на датском престоле короля Христиана V, сделал Ремера сенатором, а затем и главой Государственного совета. Кажется, что в таких условиях просто некогда было заниматься наукой. Но нет, живя на родине, Ремер ничуть не ослабил своей научной активности. Более того, он даже расширил сферу ее применения.
После смерти Ремера в его личной обсерватории было найдено 54 изобретенных им инструмента. Важнейшими из них по праву считаются пассажный инструмент и меридианный круг - приборы, используемые для астрономических наблюдений и в наши дни. За изобретательский талант Ремера справедливо прозвали «северным Архимедом». Авторитет Ремера в деле организации астрономических наблюдений был столь велик, что сам Лейбниц обращался к нему за советами по вопросу устройства обсерватории.
О результатах астрономических наблюдений Ремера, сделанных в Дании, известно мало - большая часть его записей сгорела во время пожара в 1728 г.. Такая судьба наследия Ремера тем более достойна сожаления, так как по некоторым оценкам объем проведенных им наблюдений не уступал объему наблюдений Тихо Браге, но наверняка они были выполнены с гораздо большей точностью. Та ничтожная часть записей Ремера, которую удалось спасти при пожаре его преданному ученику Питеру Горребу, была обработана немецкими астрономами в середине XIX в., что позволило определить положение более 1000 звезд. Это лишний раз свидетельствует о значимости наблюдений выдающегося датского астронома. Не зря его имя занесено на карту Луны.
Ремер умер 19 сентября 1710 г., так и не дождавшись подтверждения открытия, обессмертившего его имя.
Реакция на открытие Ремера в мировой науке того времени
Далеко не все современники Ремера оценили его работу положительно. Мы уже знаем, что Кассини выступил против объяснения запаздывания затмений, данного Ремером. Он предложил множество причин, вследствие которых могли наблюдаться эти запаздывания. Среди них были и вытянутость орбиты спутника, и неравномерность его движения по орбите, вызванная неизвестными причинами. При публикации собственных данных по наблюдениям спутников Юпитера Кассини даже решился объявить те из них, которые подтверждали вывод Ремера, «ненадежными».
На оценке работы Ремера отрицательно сказалась «семейственность», царившая в Парижской обсерватории - все члены семьи Кассини были настроены против идеи о конечности скорости света. По-видимому, лишь один довод семейства Кассини заслуживал серьезного внимания - отсутствие аналогичных четко выраженных закономерностей в движении других спутников Юпитера. Ответ на этот вопрос Ремер не мог дать в силу неразработанности теории движения спутников больших планет, испытывающих взаимное влияние, - ведь его работа появилась за десять лет до выхода в свет ньютоновских «Математических начал натуральной философии» (1687 г.), в которых был сформулирован закон всемирного тяготения.
Выводы Ремера были положительно восприняты за рубежом: X. Гюйгенсом в Голландии, И. Ньютоном, Дж. Флемстидом, Дж. Брадлеем, Э. Галлеем в Англии, Г. В. Лейбницем в Германии, и только в стране, где было сделано открытие, - во Франции, оно не получило признания по тем же причинам, которые и вынудили Ремера уехать на родину.
Окончательно подтвердил теорию Ремера и одновременно снял возражения Декарта астроном Бредли (1693-1762) в 1725 г., когда он, пытаясь найти параллакс некоторых звезд (видимое изменение положения небесного светила вследствие перемещения наблюдателя), обнаружил, что в своей кульминации они кажутся отклоненными к югу. Наблюдения, продолжавшиеся до 1728 г., показали, что в течение года эти звезды как бы описывают эллипс. Бредли интерпретировал это явление, названное в 1729 г. Евстахием Манфреди аберрацией, как результат сложения скорости света, идущего от звезды со скоростью орбитального движения Земли.
Роберт Милликен родился 22 марта 1868 года в штате Иллинойс в семье священника. Его детство прошло в небольшом, стоявшем на берегу реки, городке Маквокета (штат Айова). «Мой отец и мать воспитали шестерых детей - трех девочек и трех мальчиков, живя на жалованье священника небольшого городка в тысячу триста долларов в год, - рассказывал он. - Мы носили костюмы и платья из синей бумажной ткани и ходили босиком, начиная с окончания школы в мае и до начала занятий в сентябре. Зимой мы, мальчики, ежедневно распиливали десять четырехфутовых бревен. Так продолжалось до тех пор, пока мы не напиливали десять кордов (1 корд = 3,63 кубометра) дров. Во время каникул по утрам мы должны были работать в саду, но после обеда у нас было свободное время для игр».
Дети плавали в реке, играли в бейсбол, два раза в день доили коров, вставали в три часа ночи, чтобы встретить бродячую цирковую труппу, выучились крутиться на самодельных параллельных брусьях и никогда не слыхали о том, что взрослый человек может заработать себе на жизнь, проводя время в лаборатории и работая над какой-то физикой. Для них слово «физика» связывалось с понятием о слабительном (разг. «physic» - слабительное).
Курс физики в средней школе Маквокеты вел сам директор, который в летние месяцы занимался главным образом поисками подземных вод при помощи раздвоенного орехового прутика и уж во всяком случае не очень то верил во всю эту ерунду, напечатанную в учебнике: «Как это можно из волн сделать звук? Ерунда, мальчики, это все ерунда?». Но зато учителя алгебры Милликен с уважением вспоминал всю жизнь.
Когда ему исполнилось восемнадцать, он поступил в Оберлинский колледж - брат его бабушки был одним из основателей этого учебного заведения. На втором курсе колледжа он вновь прослушал курс лекций по физике, которые были ничуть не веселее тех, что ему читали в средней школе. Навыки в спортивных играх и атлетике, приобретенные в детстве на задних дворах, помогли ему получить место преподавателя гимнастики, а доход от преподавания физики в средней школе еще более укрепил его финансовое положение.
Милликен, надо сказать, добросовестно относился к своим преподавательским обязанностям. Чтобы идти впереди своих учеников, он изучал все учебники, какие только мог достать. В то время в американских колледжах было всего две книги по физике - переведенные с французского языка работы Гано и Дешанеля.
При таких обстоятельствах Милликен действительно хорошо научил предмет.
По окончании колледжа в 1891 году Милликен продолжал преподавать физику в Оберлине, получая небольшое жалованье. Он был вынужден заниматься этим, ибо, как говорил он сам, «в тот год депрессии никакой вакансии не было». Однако преподаватели Оберлина значительно серьезнее относились к роли Милликена в науке, чем он сам, и без его ведома направили его документы в Колумбийский университет. Ему была предложена стипендия, и Милликен поступил в университет, ибо другой возможности получать регулярно 700 долларов у него не было. В Колумбийском университете он впервые встретился с людьми, глубоко интересовавшимися физикой, Милликен решил последовать их примеру и попытаться стать настоящим ученым, несмотря на то, что уже много лет терзался сомнениями относительно своих способностей.
В 1893 году наука в Америке была отсталой. Только люди, получившие образование в Европе, хорошо представляли себе, как именно следует вести научно-исследовательскую работу. На физическом факультете Колумбийского университета был только один такой человек - профессор Майкл Пьюпин, получивший образование в Кембридже. Милликен говорил: «Слушая курс оптики, который читал доктор Пьюпин, я все больше удивлялся.
Впервые в жизни я встретил человека, который настолько хорошо знал аналитические процессы, что, не готовясь к занятиям, приходил ежедневно в аудиторию и излагал свои мысли в виде уравнений. Я решил попытаться научиться делать то же самое». Когда срок стипендии, назначенный Милликену для изучения физики, истек, она не была возобновлена: Пьюпин предпочел Милликену другого кандидата.
Когда Пьюпин узнал, что Милликен остался без всяких средств к существованию, он заинтересовался его судьбой. На следующий год именно по настоянию Пьюпина Милликен решил поехать учиться в Германию. Милликену пришлось признаться, что у него нет средств, и Пьюпин дал ему взаймы необходимую сумму. Пьюпин хотел подарить ему эти деньги, но Милликен не согласился и вручил Пьюпину расписку в получении денег.
Перед самым отъездом Милликен встретился еще с одним человеком, сыгравшим значительную роль в его жизни. Во время летней сессии Милликен побывал в недавно открытом Чикагском университете, где познакомился с А. А. Майкельсоном. Ни один человек никогда не производил на молодого ученого столь сильного впечатления. В этом же университете Пьюпин в 1895 году получил докторскую степень.
Милликен находился в Европе (работал в Берлинском и Геттингенском университетах), когда за серией экспериментальных работ последовал грандиозный взрыв всех классических теорий. В 1895 и 1896 годах прозвучали в науке имена Беккереля, Рентгена, Кюри и Томсона.
Брожение еще продолжалось, когда летом 1896 года Милликен получил от А. А. Майкельсона телеграмму с предложением занять место ассистента в Чикагском университете. Милликену было тогда 28 лет. «Я отдал мою одежду вместе с чемоданом в заклад капитану одного из судов Американской транспортной линии, заверив компанию, что я выплачу капитану стоимость проезда в Нью-Йорке и только после этого приду за вещами».
Следующие двенадцать лет Милликен провел в обстановке неутомимой научной активности, характерной для Чикаго в начале века. Чикагский университет собрал в своих стенах молодых людей, которых в скором времени ожидала широкая известность: астронома Джорджа Гейля, историка Джеймса Брестеда, экономиста Стефена Ликона, Роберта Ловетта и многих, многих других. В одном пансионе с Милликеном проживали двое юношей: Торстейн Веблен и Гарольд Икс.
Первые годы, проведенные в Чикаго, Милликен посвятил написанию удобоваримых американских учебников по физике и заботам о своей молодой семье. Майкельсон взвалил на него всю преподавательскую работу, которая не соответствовала нраву старика.
В годы Первой мировой войны (1914-1918) Милликен был заместителем председателя национального исследовательского совета (разрабатывал метеорологические приборы для обнаружения подводных лодок).
Милликен начал серьезно заниматься научно-исследовательской работой, когда ему было почти сорок лет. Проблемы для исследования обычно выбирались им из числа тех, которые так потрясли ученый мир, когда он еще был в Европе. Милликен, поневоле ставший физиком, поставил два эксперимента, которые и поныне являются классическим образцом изящества замысла и воплощения. Он заслужил полученную им Нобелевскую премию (в 1923 году).