Сборник задач по математике с решениями - А. А. Рывкин, Е. Б. Ваховский 2003

Задачи
Алгебраические неравенства

О доказательстве неравенств. Доказать неравенство можно следующими способами, которые мы продемонстрируем на примере неравенства

1. От противного. Предположим противное:

Тогда

что невозможно.

2. По определению неравенства. Составим разность левой и правой частей и определим ее знак:

3. Вывести из ранее доказанного или очевидного неравенства. Мы знаем, что

откуда

Обратите внимание, что следующее «доказательство» неравенства является логически некорректным.

Если

и, следовательно,

что очевидно.

Некорректность приведенных рассуждений состоит в том, что в качестве исходного пункта взято доказываемое неравенство. Таким образом установлено, что если

то (√а − √b)² ≥ 0. Однако верное следствие может быть получено из ложной посылки. Если те же рассуждения провести в обратном порядке, то мы получим корректное доказательство, аналогичное тому, которое приведено выше под номером 3).

Решение неравенств. Система, совокупность. Решить неравенство — значит, найти все системы значений входящих в него неизвестных, при которых неравенство истинно, или доказать, что таких систем значений нет.

Если два или несколько неравенств должны удовлетворяться одновременно, то говорят, что они образуют систему.

Если достаточно, чтобы удовлетворялось одно из двух или нескольких неравенств, то говорят, что эти неравенства образуют совокупность.

Неравенства, образующие систему, записывают одно под другим, а сбоку ставят фигурную скобку — знак системы.

Например,

Решение этой системы показано на рис. 10.1 двойной штриховкой. Эта же система неравенств может быть записана так: 3 < x < 7.

Совокупность неравенств записывают либо в строку, либо в столбец и ставят слева квадратную скобку. Это позволяет не путать совокупность неравенств с системой. Запись

означает, что число x должно лежать на любом из заштрихованных на рис. 10.2 интервалов.

Решить систему, состоящую из нескольких совокупностей неравенств, — значит, найти все значения неизвестного, удовлетворяющие всем входящим в систему совокупностям.

Пример 1. Решить систему совокупностей неравенств

Решение первой совокупности изображено на рис. 10.3 с помощью двух прямоугольников (левая сторона одного из них бесконечно отодвинута влево), расположенных над точками, удовлетворяющими этой совокупности. Аналогично на этом же рисунке изображены решения второй и третьей совокупностей.

Чтобы избежать путаницы, мы для разных совокупностей строим прямоугольники различной высоты. Особо внимательно нужно следить за концами интервалов: если неравенство строгое, то будем рисовать в конце интервала светлый кружок, а если нестрогое, то — черный кружок. Специально разберите случаи, когда одна и та же точка оказывается и светлой, и темной — для системы и совокупности неравенств.

Точки числовой оси, над которыми расположены три прямоугольника разной высоты (см. рис. 10.3), дают решение системы: 1,5 < x ≤ 2.

Упражнения[7]

1. Что произойдет с совокупностью неравенств, если к ней добавить неравенство, не имеющее решений?

2. Что произойдет с системой неравенств, если к ней добавить неравенство, не имеющее решений?

3. Решите систему двух совокупностей неравенств

Метод интервалов. Рассмотрим неравенства типа

(1)

Начнем предварительно с неравенства (x − 2)(x − 3) > 0. Его нередко решают следующим образом. Произведение двух множителей положительно тогда и только тогда, когда оба множителя одного знака, т. е. данное неравенство равносильно совокупности двух систем

Чтобы убедиться в нерациональности такого способа решения, достаточно применить его к решению неравенства, левая часть которого содержит, например, десять множителей

(x − 1)(x − 2)...(x − 10) > 0. (2)

Несложный подсчет показывает, что в этом случае пришлось бы рассматривать совокупность, состоящую из 512 систем по 10 неравенств в каждой системе.

Решим неравенство (2) с помощью более рационального приема, называемого методом интервалов. Отметим на числовой оси все корни многочлена, стоящего в левой части неравенства (рис. 10.4). Когда x расположен правее самого большого корня (x > 10), многочлен будет положительным, так как каждый множитель положителен. Если двигаться по оси в отрицательном направлении, то при переходе через точку x = 10 множитель x − 10 поменяет знак. В произведении появится один отрицательный множитель, а девять останутся положительными, в результате чего многочлен поменяет знак, так как появится дополнительный отрицательный множитель. Далее перемена знака произведения произойдет при переходе через каждую из обозначенных на рис. 10.4 точек. (Области, где многочлен положителен, отмечены на рис. 10.4 дугой сверху, а области, где он отрицателен, — дугой снизу.) Теперь легко записать решение неравенства (2):

x < 1, 2 < x < 3, 4 < x < 5, 6 < x < 7, 8 < x < 9, x > 10.

Приемы, позволяющие решать более сложные неравенства типа (1), станут понятны, если вы разберете примеры 2 и 3 и следующие за ними упражнения.

Пример 2. Решить неравенство (x + 3)(2x + 2)(x − 4)²(5 − x) > 0.

Перепишем неравенство в виде

(x + 3)(x + 1)(x − 4)²(x − 5) < 0,

где в каждой скобке стоит двучлен с коэффициентом 1 при x. Множитель (x − 4)² всегда неотрицателен и только в точке x = 4 обращается в нуль. Поэтому его влияние на решение неравенства

ограничивается тем, что он исключает точку x = 4 (рис. 10.5). Остается проследить чередование знаков в неравенстве

(x + 3)(x + 1)(x − 5) < 0.

Ответ. x < −3, −1 < x < 4, 4 < x < 5.

Пример 3. Решить неравенство

(3)

Данное неравенство не удовлетворяется в тех точках, где множители, стоящие в знаменателе, обращаются в нуль (x = 4, x = 2). Поэтому исключим эти точки из дальнейшего рассмотрения, обозначив их на рис. 10.6 светлыми кружками.

В точках же, в которых обращается в нуль числитель (x = −3, x = −1, x = 5), неравенство превращается в равенство, т. е. эти точки должны войти в решение неравенства (3). Отметим их на рисунке черными кружками[8]).

Множители (x + 3)² и (x − 4)², не меняющие знака на всей числовой оси, можно опустить, так как их влияние уже учтено. Во всех остальных точках неравенство (3) равносильно такому:

(x + 1)(x − 5)(x − 2) < 0.

Ответ. x ≤ −1, 2 < x < 4, 4 < x ≤ 5.

Упражнения

Решите неравенства:

4. (5 − 2х)(3 − x)³(x − 4)² < 0.

5.

Иррациональные неравенства. Решая уравнения, мы можем получать следствия данного уравнения и закончить решение проверкой, которая отсеивает посторонние корни. При решении же неравенств обычно получаются целые интервалы решений, что сильно усложняет проверку. Поэтому неравенства преобразовывают так, чтобы не нарушалась равносильность.

Начнем с иррациональных неравенств.

Пример 4. Решить неравенство

(4)

Нередко предлагают такое «решение»:

x² − 55х + 250 < (x − 14)²,

−55х + 250 < −28х + 196,

x > 2,

которое обосновывают следующим образом: «Левая часть меньше правой, но неотрицательна, так как мы имеем дело с арифметическим корнем. Следовательно, обе части данного неравенства неотрицательны, и его можно возвести в квадрат, не нарушая равносильности неравенства».

Чтобы убедиться, что неравенство решено неверно, подставим в данное неравенство, например, x = 10.

Проанализируем ход приведенных здесь рассуждений. Они доказывают, что если неравенство (4) удовлетворяется при некоторых x, то обе части его можно возвести в квадрат, и тогда x > 2. Однако отсюда не следует обратное, что исходное неравенство удовлетворяется при всех x > 2.

Присутствие в неравенстве (4) квадратного корня накладывало на неизвестное определенные ограничения, которые оказались разрушенными после возведения неравенства (4) в квадрат.

Трехчлен x² − 55х + 250 вначале стоял под знаком квадратного корня, а потому должен был быть неотрицательным. После возведения неравенства (4) в квадрат это ограничение исчезло; теперь ничто не мешает трехчлену стать отрицательным. Даже наоборот, в этом случае неравенство x² − 55х + 250 < (x − 14)² удовлетворяется наверняка, так как справа стоит величина, которая не может стать меньше нуля.

Чтобы подкоренное выражение оставалось неотрицательным, мы должны добавить к полученному после возведения в квадрат неравенству требование x² − 55x + 250 ≥ 0, т. е. x ≤ 5, x ≥ 50. Из полупрямой x > 2 оказались выделенными две ее части: 2 < x ≤ 5, x ≥ 50.

Но и теперь еще не все. Достаточно подставить в исходное неравенство значение x = 4, и мы убедимся, что оно не удовлетворяется. Дело в том, что при возведении в квадрат мы устранили еще одно ограничение, которое присутствовало в неравенстве (4). В левой части первоначального неравенства стоит квадратный корень, т. е. неотрицательное число. Чтобы это неравенство удовлетворялось, правая его часть x − 14 должна быть больше нуля. Итак, надо добавить ограничение x − 14 > 0, которое присутствовало в исходном неравенстве и оказалось разрушенным после возведения в квадрат.

Таким образом, после возведения данного неравенства в квадрат, мы должны позаботиться о сохранении всех ограничений, которые присутствуют в данном неравенстве. Неравенство (4) нужно было заменить системой

решая которую мы нашли бы, что

т. е. x ≥ 50.

Упражнения

В каждом из неравенств 6—9 освободитесь от иррациональности, не нарушая равносильности:

6.

7.

8.

9.

Показательные и логарифмические неравенства. При решении показательных и логарифмических неравенств пользуются следующими свойствами:

1. Неравенство f(x)φ(x) > 1, где f(x) > 0, равносильно совокупности двух систем неравенств:

или системе неравенств

1а. Неравенство f(x)φ(x) < 1, где f(x) > 0, равносильно совокупности двух систем неравенств:

или системе неравенств

2. Неравенство logf(x)φ(x) > 0 равносильно совокупности двух систем неравенств:

или системе неравенств

2а. Неравенство logf(x)φ(x) < 0 равносильно совокупности двух систем неравенств:

или системе неравенств

Решения неравенств f(x)φ(x) < 1 и f(x)φ(x) > 1 в предположении, что допускаются отрицательные значения f(x), разобраны в задачах 10.29, 10.30, 10.32.

Запомнить эти свойства можно следующим образом: степень больше единицы, если основание и показатель степени одинаково расположены по отношению к единице и нулю соответственно (т. е. основание правее единицы и показатель правее нуля или основание левее единицы и показатель левее нуля); логарифм больше нуля, если основание и логарифмируемое выражение одинаково расположены по отношению к единице. Если расположение элементов, о которых шла речь, неодинаково, то степень меньше единицы, а логарифм меньше нуля.

10.1. Докажите, что если а + b = 2, где а и b — действительные числа, то а4 + b4 ≥ 2.

10.2. Докажите, что

(1 + a1)(1 + а2)...(1 + аn) ≥ 2n,

если а1, а2, ..., аn, аn — положительные числа и а1а2...аn = 1.

10.3. Дано а + b = с, где а, b, с — положительные числа. Докажите, что

а + b > с .

10.4. Докажите, что −x³ + x² ≤ ¼, если 0 ≤ x ≤ 1.

10.5. Докажите неравенство

при условии, что а + b + с = 1, а подкоренные выражения неотрицательны.

10.6. Докажите неравенство

(а + b)n < 2n(аn + bn),

если а > 0, b > 0, n — натуральное число.

10.7. Докажите, что при а > b > 0 и p > q где а, b и с — положительные и не равные друг другу числа, не пользуясь неравенствами между средним арифметическим и средним геометрическим трех чисел.

10.8. Докажите, что

при n > 1.

10.9. Докажите неравенство

a/b + b/c + c/a > 3

где а, b и с — положительные и не равные друг другу числа, не пользуясь неравенствами между средним арифметическим и средним геометрическим трех чисел.

10.10. Докажите, что

а² + b² + с² ≥ 4S√3,

где а, b, с — стороны, а S — площадь некоторого треугольника.

10.11. Докажите, что

(x − 1)(x − 3)(x − 4)(x − 6) + 10 ≥ 1

при всех действительных значениях x.

10.12. Докажите, что если действительные числа x, у, z, не равные нулю, удовлетворяют равенствам:

x + у + z = xуz и x² = уz,

то

x² ≥ 3.

10.13. Докажите, что если x, у, z — действительные числа, удовлетворяющие равенствам

x + у + z = 5, уz + zx + xу = 8,

то

1 ≤ x7/3, 1 ≤ y7/3, 1 ≤ x7/3. [9]

10.14. Решите неравенство

аx² + x + 1 > 0,

где а ≠ 0 — произвольное действительное число.

10.15. Найдите все действительные значения m, при которых квадратный трехчлен x² + mx + (m² + 6m) будет отрицателен при всех значениях x, удовлетворяющих неравенству 1 < x < 2.

10.16. Найдите все действительные значения а, при которых корни многочлена x² + x + а будут действительными и оба корня будут больше а.

10.17. При каких значениях к корни многочлена

k²x² + kx − 2

будут действительными и один корень по абсолютной величине будет больше 1, а другой по абсолютной величине будет меньше 1?

10.18. Найдите все действительные значения m, для которых неравенство

тx² − 4x + 3m + 1 > 0

удовлетворяется при всех положительных значениях x.

Решите неравенства:

10.19. |x² − 2x − 3| < 3x − 3.

10.20. |x − 3| > |x + 2|.

10.21.

10.22.

10.23.

10.24.

10.25.

10.26.

10.27. 4x ≤ 3 · 2x + x + 4x+1.

10.28. 4x² + 3x +1 + x · 3x < 2x² · 3x + 2x + 6.

10.29[10].

Решите неравенства:

10.30. (4x² + 12x + 10)|x³ − 5x + 2| ≥ (4x² + 12x + 10)x − 2.

10.31. xlogаx +1 > а²x.

10.32[11].

10.33.

10.34.

10.35.

10.36. log2 (2x − 1) log½ (2x + 1 − 2) > −2.

10.37. log|x + 6| 2 · log2(x² − x − 2) ≥ 1.

10.38.

10.39. logkxx + logx(kx²) > 0, где 0 < k < 1.

10.40. logx[log2(4x − 6)] ≤ 1.

10.41.

10.42.

10.43. |√2 |x| − 1| · 1ох2 (2 − 2x²) > 1.

10.44.

10.45. logx² − 1 (3x − 1) < logx² − 1 x².

10.46.

10.47. При каких значениях у верно следующее утверждение: «Существует хотя бы одно значение x, при котором удовлетворяется неравенство

2 log0,5 y² − 3 + 2x log0,5 y² − x² > 0»?

10.48. При каких значениях а из неравенства

x² − а(1 + а²)x + а4 < 0

следует неравенство

x² + 4x + 3 < 0?

10.49. Для каждого действительного а решите неравенство

10.50. Решите неравенство

(x² + 8x + 15)22 + x > x² + 7x + 10.

10.51. Определите, какие из чисел −4, −1, 1, 4 являются решениями неравенства

|0,5 − lg 5|x ≤ 0,5 − lg 5.

10.52. Решите неравенство

(√5 − 2)x − 6 ≤ (√5 + 2)x.

10.53. Решите неравенство






Для любых предложений по сайту: [email protected]