ЭКОЛОГИЧЕСКИЕ СИСТЕМЫ - Основы экологии - Организмы и окружающая среда

Биология - Краткий курс с рисунками и коспект-схемами для студентов - А. Б. Чердак - 2016 год

ЭКОЛОГИЧЕСКИЕ СИСТЕМЫ - Основы экологии - Организмы и окружающая среда

Научный вопрос о начале жизни на земле сводится к вопросу о начале в ней биосферы... Вне биосферы мы жизнь научно не знаем и проявлений её научно не видим. Организм, удалённый из биосферы, есть не реальное, есть отвлечённое логическое построение.

В.И. Вернадский

ГЛАВА 1. Основы экологии.

Природа обычно рассматривается как объект хозяйственной деятельности человека, но в действительности она в значительной степени формирует и духовную сферу человека. Человек, как биологический объект, не может существовать вне природы...

Отношения природы и человека - это отношение двух культур, каждая из которых посвоему “социальна”, общежительна, обладающая своими “правилами поведения”. И их встреча строится на своеобразных нравственных основаниях. Обе культуры — плод исторического развития... Одна (культура природы) может существовать без другой (человеческой), а другая (человеческая) не может.

Д. С. Лихачёв

§1. ЭКОЛОГИЧЕСКИЕ СИСТЕМЫ.

Человек живёт природой. Это значит, что природа есть его тело, с которым человек должен оставаться в процессе постоянного общения, чтобы не умереть. Что физическая и духовная жизнь человека неразрывно связана с природой, означает не что иное, как то, что природа неразрывно связана сама с собой, ибо человек есть часть природы.

Карл Маркс

Экология (греч. oikos “дом” + logos “наука”) — это наука о взаимоотношении организмов и окружающей среды. Термин “экология” предложил в 1866 году Эрнст Геккель. В настоящее время экология — это междисциплинарная отрасль на стыке биологии, физики, химии, географии и общественных наук.

Экология рассматривает наиболее крупные уровни организации живого: популяции, сообщества и экосистемы. Напомним, что популяцией называется группа организмов одного вида, в достаточной степени изолированная от других групп. Сообщество — это группа организмов различных видов, проживающих на общей территории и взаимодействующих между собой. Экологическая система (биогеоценоз) — это сообщество организмов с окружающей их абиотической средой (почвой, атмосферой и т. п.).

Существуют пять основных подходов в экологии:

1) популяционная экология (изучение динамики численности популяций и её связи с внешними факторами);

2) синэкология (изучение природных сообществ);

3) изучение местообитаний;

4) изучение экосистем (в частности, круговорота веществ и энергии в природе);

5) эволюционная экология (реконструкция древних природных сообществ и прогнозирование изменений в сообществах), а также историческая экология (изучение изменений, связанных с деятельностью человека).

В экологическую систему входят абиотические (то есть неживые) и биотические компоненты. Иногда абиотические компоненты биогеоценоза называют биотопом, а биотические — биоценозом. Почву, относящуюся к абиотическим компонентам, нередко рассматривают как отдельную структурную единицу экосистемы.

Биотопы объединяются в биохоры, а последние — в биоциклы. Так, биотопы каменистых, глинистых и песчаных пустынь объединяются в биохор пустынь; биохоры пустынь, лесов и степей объединяются в биоцикл суши. Три биоцикла: суша, море и внутренние водоёмы — образуют биосферу.

Одним из важнейших экологических понятий является поток энергии. Энергия приходит в экологические системы в конечном счёте от Солнца; при этом автотрофы используют непосредственно солнечный свет, а гетеротрофы получают от автотрофов уже преобразованную энергию в виде питательных веществ. За год одним квадратным метром земной поверхности (и растениями на нём) поглощается около 5 • 109 Дж тепла. Большая часть энергии сразу отражается обратно в атмосферу, часть усваивается организмами и переходит в другие формы. При этом какая-то доля энергии также переизлучается в атмосферу в виде тепла.

§1.2. ПИЩЕВЫЕ ЦЕПИ И ЭКОЛОГИЧЕСКИЕ ПИРАМИДЫ

Крупная рыба питается всякой рыбной сволочью, которая ест рачков, улиток и траву, а мы кушаем всех.

Иван Губков, бригадир феодосийского рыбколхоза “Волна Революции”

Внутри экологической системы органические вещества создаются автотрофными организмами (например, растениями). Растения поедают животные, которых, в свою очередь, поедают другие животные. Такая последовательность называется пищевой цепью; каждое звено пищевой цепи называется трофическим уровнем (греч. trophos “питание”).

Организмы первого трофического уровня называются первичными продуцентами. На суше большую часть продуцентов составляют растения лесов и лугов; в воде это, в основном, зелёные водоросли. Кроме того, производить органические вещества могут синезеленые водоросли и некоторые бактерии.

Организмы второго трофического уровня называются первичными консументами, третьего трофического уровня — вторичными консументами и т. д. Первичные консументы — это травоядные животные (многие насекомые, птицы и звери на суше, моллюски и ракообразные в воде) и паразиты растений (например, паразитирующие грибы). Вторичные консументы — это плотоядные организмы: хищники либо паразиты. В типичных пищевых цепях хищники оказываются крупнее на каждом уровне, а паразиты — мельче.

Существует ещё одна группа организмов, называемых редуцентами. Это сапрофиты (обычно, бактерии и грибы), питающиеся органическими остатками мёртвых растений и животных (детритом). Детритом могут также питаться животные — детритофаги, ускоряя процесс разложения остатков. Детритофагов, в свою очередь, могут поедать хищники. В отличие от пастбищных пищевых цепей, начинающихся с первичных продуцентов (то есть с живого органического вещества), детритные пищевые цепи начинаются с детрита (то есть с мёртвой органики).

В схемах пищевых цепей каждый организм представлен питающимся организмами какого-то определённого типа. Действительность намного сложнее, и организмы (особенно, хищники) могут питаться самыми разными организмами, даже из различных пищевых цепей. Таким образом, пищевые цепи переплетаются, образуя пищевые сети.

Пищевые сети служат основой для построения экологических пирамид. Простейшими из них являются пирамиды численности, которые отражают количество организмов (отдельных особей) на каждом трофическом уровне. Для удобства анализа эти количества отображаются прямоугольниками, длина которых пропорциональна количеству организмов, обитающих в изучаемой экосистеме, либо логарифму этого количества. Часто пирамиды численности строят в расчёте на единицу площади (в наземных экосистемах) или объёма (в водных экосистемах).

В пирамидах численности дерево и колосок учитываются одинаково, несмотря на их различную массу. Поэтому более удобно использовать пирамиды биомассы, которые рассчитываются не по количеству особей на каждом трофическом уровне, а по их суммарной массе. Построение пирамид биомассы — более сложный и длительный процесс.

Пирамиды биомассы не отражают энергетической значимости организмов и не учитывают скорость потребления биомассы. Это может приводить к аномалиям в виде перевёрнутых пирамид. Выходом из положения является построение наиболее сложных пирамид — пирамид энергии. Они показывают количество энергии, прошедшее через каждый трофический уровень экосистемы за определённый промежуток времени (например, за год — чтобы учесть сезонные колебания). В основание пирамиды энергии часто добавляют прямоугольник, показывающий приток солнечной энергии. Пирамиды энергии позволяют сравнивать энергетическую значимость популяций внутри экосистемы. Так, доля энергии, проходящей через почвенных бактерий, несмотря на их ничтожную биомассу, может составлять десятки процентов от общего потока энергии, проходящего через первичных консументов.

Органическое вещество, производимое автотрофами, называется первичной продукцией. Скорость накопления энергии первичными продуцентами называется валовой первичной продуктивностью (ВПП), а скорость накопления органических веществ — чистой первичной продуктивностью (ЧПП). ВПП примерно на 20 % выше, чем ЧПП, так как часть энергии растения тратят на дыхание. Всего растения усваивают около процента солнечной энергии, поглощённой ими.

При поедании одних организмов другими вещество и пища переходят на следующий трофический уровень. Количество органического вещества, накопленного гетеротрофами, называется вторичной продукцией. Поскольку гетеротрофы дышат и выделяют непереваренные остатки, в каждом звене часть энергии теряется. Это накладывает существенное ограничение на длину пищевых цепей; количество звеньев в них редко бывает больше шести. Отметим, что эффективность переноса энергии от одних организмов к другим значительно выше, чем эффективность производства первичной продукции. Средняя эффективность переноса энергии от растения к животному составляет около 10%, а от животного к животному — 20%. Обычно растительная пища энергетически менее ценна, так как в ней содержится большое количество целлюлозы и древесины, не перевариваемых большинством животных.

Изучение продуктивности экосистем важно для их рационального использования. Эффективность экосистем может быть повышена за счёт повышения урожайности, уменьшения помех со стороны других организмов (например, сорняков по отношению к сельскохозяйственным культурам), использования культур, более приспособленных к условиям данной экосистемы. По отношению к животным необходимо знать максимальный уровень добычи (то есть количество особей, которые можно изъять из популяции за определённый промежуток времени без ущерба для её дальнейшей продуктивности).

§1.3. ПОЧВА.

Почва есть функция (результат) от материнской породы (грунта), климата и организмов, помноженная на время.

В.В. Докучаев

Почва — это слой вещества, лежащий поверх горных пород земной коры, особое природное образование, играющее очень важную роль в наземных экосистемах. Почва является связующим звеном между биотическим и абиотическим факторами биогеоценоза. Изучением почв занимается почвоведение, основателем которого является Василий Васильевич Докучаев.

В состав почвы входят четыре важнейших компонента:

• минеральная основа (50-60 % от общего объёма);

• органическое вещество (до 10 %);

• воздух (15-25 %);

• вода (25-35 %).

Почвы состоят из частиц различного размера, начиная от крупных валунов и заканчивая мелким грунтом (частицы мельче 2мм в диаметре) и коллоидными частицами (<1мкм). Обычно частицы, составляющие почву, делят на глину (мельче 0,002мм в диаметре), ил (0,002-0,02мм), песок (0,02-2,0мм) и гравий (больше 2мм). Механическая структура почвы имеет очень важное значение для сельского хозяйства, определяет усилия, требуемые для обработки почвы, необходимое количество поливов и т. п. Хорошие почвы содержат примерно одинаковое количество песка и глины; они называются суглинками. Преобладание песка делает почву более рассыпчатой и лёгкой для обработки; с другой стороны, в ней хуже удерживается вода и питательные вещества. Глинистые почвы плохо дренируются, являются сырыми и клейкими, но зато содержат много питательных веществ и не выщелачиваются. Каменистость почвы (наличие крупных частиц) влияет на износ сельскохозяйственных орудий.

По химическому составу минеральной компоненты почва состоит из песка и алеврита (формы кварца (кремнезёма) SiO2 с добавками силикатов (А14(SiO4)3, Fе4(SiO4)3, Fе2SiO4) и глинистых минералов (кристаллические соединения силикатов и гидроксида алюминия)).

Органические вещества в почве образуются из остатков растений и животных. Важную роль в процессе разложения играют сапрофиты. В результате образуется аморфная масса —гумус — тёмно-коричневого или чёрного цвета. Химический состав гумуса — фенольные соединения, карбоновые кислоты, эфиры жирных кислот. В почве частицы гумуса прилипают к глине, образуя единый комплекс. Гумус улучшает свойства почвы, повышая ее способность удерживать влагу и растворённые минеральные вещества. В болотистых почвах образование гумуса идёт очень медленно. Органические остатки спрессовываются здесь в торф.

Некоторые химические элементы (азот, фосфор, сера) в процессе разложения переходят из органических соединений в неорганические, Происходит так называемый процесс минерализации вещества.

Воздух и вода удерживаются в почве в промежутках между ее частицами. Часть воды просачиается сквозь почву, образуя грунтовые воды; остальная вода остается в почве благодаря силам поверхностного натяжения либо адсорбируется на поверхностях кристаллов.

Почва образуется из горной породы в результате выветривания и деятельности живых организмов. Суточные температурные колебания приводят к расшерению и сжатию горных пород. Неравномерное расширение ведёт к их постепенному разрушению. Вода, просачиваясь в трещины, при замерзании создаёт огромное давление, что также способствует разрушению породы. Перемещаемые водой и ветром частицы вызывают эрозию. Наконец, выветривание вызывается вымыванием из горной породы различных химических веществ водой. Важным фактором, определяющим образование почвы, является рельеф местности.

Единая международная классификация почв пока ещё не разработана. Почвы одного типа обычно образуют широтные зоны, вытянутые вдоль областей с одинаковым увлажнением и среднегодовой температурой. В горах чётко прослеживается высотная зональность почв.

§1.4. АБИОТИЧЕСКИЕ КОМПОНЕНТЫ.

Больше леса - больше снега, больше снега - больше хлеба.

Русская пословица

Важнейшими составляющими абиотического компонента экосистемы помимо почв являются климатические и топографические факторы. Кроме того, в абиотический компонент может входить наличие волн, гейзеров, вулканов и прочие экзотические факторы. К климатическим факторам относят свет, температуру, влажность и т. п. На интенсивность света влияет широта местности, время дня и года, а также наклон поверхности по отношению к горизонтали. Под действием света в растениях происходят фотосинтез и транспирация, благодаря свету животные видят. Организмы, живущие в областях с выраженной сменой времён года, выработали различные реакции на периодические изменения освещённости (у растений — цветение, опадание листьев, у животных — миграция, зимняя спячка). Необходимость света для нормальной жизнедеятельности приводит к ярусной структуре наземных сообществ, а в водных экосистемах ограничивает распространение большинства организмов поверхностными слоями воды.

Ультрафиолетовые лучи с длиной волны менее 290 нм губительны для всего живого. Жизнь на Земле возможна только потому, что это излучение задерживается озоновым слоем атмосферы, и до поверхности доходит только длинноволновая часть УФ-излучения (300-400 нм). Но даже она обладает высокой активностью и может вызывать повреждение кожного покрова.

Каждый организм может существовать только в определённом диапазоне температур. При понижении температуры до 0°С происходит замерзание воды, и клетка погибает. При высоких температурах белки денатурируют, теряя свои функции, и жизнь также становится невозможной.

У организмов с непостоянной температурой тела повышение температуры окружающей среды вызывает ускорение метаболических реакций. Млекопитающие и птицы развили способность к терморегуляции — поддержанию постоянной температуры тела. Наземные организмы выработали различные адаптационные механизмы, позволяющие уменьшить неблагоприятное воздействие температурных колебаний. В воде изменения температуры относительно невелики, и проблема приспособления организмов к колебаниям так остро не стоит.

Вода, как необходимое условие жизни, также является ограничивающим фактором в экосистемах. Водный баланс определяется выпадением осадков, дренажем и испарением воды; его смещение приводит к засухе либо, наоборот, к переувлажнению. Растения и животные, обитающие в засушливых местностях, приспособились к неблагоприятным условиям: они уменьшают потери воды (например, сбрасывают листья, снижают потоотделение или транспирацию, уменьшают площадь поверхности тела), увеличивают её потребление (длинные, глубоко проникающие корни), переживают неблагоприятный период в виде луковиц и клубней или в летней спячке.

Ветер увеличивает скорость испарения воды. Он влияет на рост растений на открытых участках, переносит семена и споры неподвижных растений и животных. Перемещения воздушных масс вызывают перераспределение осадков на поверхности Земли.

В некоторых местах (например, под корой гниющего дерева) климатические условия могут отличаться от климата окружающей среды. В этом случае говорят о микроклимате. Микроклимат играет важную роль при распространении организмов, способных обитать в ограниченном диапазоне условий.

Исключительно важную роль играет и рельеф местности. Во-первых, топография сильно сказывается на климатических; горы могут являться климатическим барьером. Во-вторых, при изменении высоты местности над уровнем моря меняются температура, влажность, атмосферное давление. Крутизна склона и его ориентация по частям света (экспозиция) также оказывают большое влияние на экосистему.

Абиотический компонент — это динамическая система. Циклические процессы перемещения и превращения веществ называются круговоротами веществ. Важнейшими из них являются круговорот воды (гидрологический цикл), кислорода, углерода, азота, фосфора, кальция и других элементов.

Вода испаряется с поверхности океанов и морей, переносится ветром в виде туч и осадками выпадает на сушу. Часть воды испаряется с суши обратно в атмосферу, другая часть через грунтовые воды даёт начало рекам, третья часть поглощается организмами. По пути сквозь горные породы вода вымывает минеральные вещества; в конце концов они попадают в океан, изменяя с течением времени его состав. На круговорот воды в природе тратится огромная энергия: 10,5- 1032Дж в год (10% всей получаемой Землёй от Солнца энергии).

Углерод поглощается из атмосферы растениями, растения поедаются животными. Скорость усваивания углерода растениями составляет 1,5- 1011т в год (для сравнения общая масса углерода в растениях составляет около 5 1011т, в животных — 5 109т, в атмосфере — 6,4 1011т). В результате дыхания часть углерода возвращается обратно в атмосферу. Из остатков мёртвых организмов углерод попадает в почву и накапливается там, образуя гумус, торф, каменный уголь, нефть, природный газ. Сжигание этих веществ увеличивает содержание углекислого газа в атмосфере, что по некоторым данным увеличивает парниковый эффект. В активном круговороте углерода участвует лишь небольшое количество этого элемента; огромные запасы углерода законсервированы в известняках и других породах.

Кратко остановимся на круговоротах других важнейших веществ.

• Кислород выделяется в процессе фотосинтеза в атмосферу и поглощается из неё организмами во время дыхания, связываясь при этом в углекислом газе. Используется кислород и редуцентами — при разложении мёртвой органики. В верхних слоях атмосферы происходит взаимное превращение кислорода в озон и обратно под действием солнечных лучей. Небольшое количество кислорода фиксируется в полезных ископаемых.

Человек вносит заметные изменения в круговорот кислорода. Всё больше и больше кислорода связывается за счёт сжигания органического топлива (каменного угля, нефти, газа). Использование хлорфторуглеводородов (например, фреона) истончает озоновый слой, который защищает всё живое на Земле от губительных ультрафиолетовых лучей.

• Большинство живых организмов не могут усваивать азот в газообразной форме. Исключением являются только некоторые бактерии и сине-зелёные водоросли (при этом некоторые бактерии наоборот восстанавливают нитраты до молекулярного азота). В растениях азотсодержащие соли преобразуются в органические соединения, которые передаются дальше по цепям питания. Обратно в среду соединения азота попадают с мочой или уже после гибели организма.

Чрезмерное использование азотистых удобрений приводит к увеличению содержания нитратов в пище. Кроме того, растения усваивают лишь часть (меньшую часть) удобрений, а остальное смывается дождями в водоёмы, что в конечном итоге приводит к зарастанию водоёмов водорослями.

• Сера поступает в пищевые цепи через растения. Сера содержится в любом организме как составная часть протеинов. После гибели организма редуценты разлагают серосодержащие соединения до сульфатов и сероводорода (последний является причиной характерного запаха, например, от тухлых яиц). Окисление и восстановление серы также производится с участием бактерий-продуцентов.

Накапливаясь в горных породах и полезных ископаемых, сера постепенно выводится из круговорота. Обратно она возвращается с вулканическими газами и в процессе выветривания горных пород.

Сжигание полезных ископаемых приводит к выбросу в атмосферу оксида серы SО3. Растворяясь в дождевой воде, это вещество вызывает кислотные дожди, губительно действующие на наземные и водные экосистемы.

• В отличие от других макроэлементов из круговорота фосфора исключена газообразная форма; в атмосфере он может присутствовать только в виде пыли. В пищевую цепь фосфор поступает в виде фосфатов, преобразуясь в продуцентах в органические вещества. После гибели организма редуценты разлагают органику с выделением фосфатов, замыкая круговорот фосфора. Часть фосфора изымается из круговорота в осадочных породах; обратно этот фосфор возвращается в процессе выветривания.

Человек вносит на поля фосфатные удобрения; большая часть из них смывается в водоёмы. При изобилии фосфатов начинается взрывообразный рост одноклеточных водорослей — водоёмы “цветут”. Редуценты перестают справляться с разложением отмерших водорослей, и над водоёмом появляется характерный запах. Кроме того, при разложении отмерших водорослей расходуется большое количество кислорода; его перестаёт хватать рыбам и другим водным животным.






Для любых предложений по сайту: [email protected]