Сборник задач по математике с решениями - А. А. Рывкин, Е. Б. Ваховский 2003

Решения
Тригонометрические преобразования

12.1. В первых квадратных скобках после упрощений получим 2/sin x, вторые квадратные скобки заключают в себе выражение

Таким образом, первое слагаемое принимает вид

Второе слагаемое легко приводится к виду

Ответ.

12.2. Так как сумма углов 30° − α и 60° − α равна 90° − 2α, то

tg [(30° − α) + (60° − α)] = ctg 2α,

или

откуда следует наше тождество.

12.3. Рассмотрим выражение

Так как ctg x = ½(ctg x/2 − tg x/2), то

ctg x + ½ tg x/2 = ½ ctg x/2.

Аналогичные преобразования можно продолжить и дальше:

что и доказывает тождество.

12.4. Перепишем равенство

sin α cos (α + β) = sin β

в виде

sin α cos (α + β) = sin [(α + β) − α],

т. е.

sin α cos (α + β) = sin (α + β) cos α − sin α cos (α + β),

или

2 sin α cos (α + β) = sin (α + β) cos α.

Из условия следует, что cos (α + β) ≠ 0 и cos α ≠ 0. Разделим последнее равенство на cos (α + β) cos α. Получим

2 tg α = tg (α + β).

12.5.

Применяя последовательно формулу синуса двойного угла, приведем числитель к виду

Ответ.1/8.

12.6. Вычислим вначале произведение косинусов:

Теперь вычислим произведение квадратов синусов, умноженное на 8:

Раскроем скобки и преобразуем каждое произведение двух косинусов в сумму косинусов. После приведения подобных получим

Теперь можно найти произведение тангенсов.

Ответ. √7 .

12.7. Преобразуем правую часть равенства, которое нужно доказать:

и воспользуемся условием. Получим

12.8. Доказательство представляет собой цепочку преобразований sin (x + y) sin (xy) = sin² x cos² y − cos² x sin² y = k² sin² y cos² y − cos² x sin² y = sin² y (k² cos² y − cos² x).

Так как cos² x = 1 − k² sin² y, то выражение в скобках равно k² − 1. По условию −1 ≤ k ≤ 1, т. е. k² − 1 ≤ 0, и, следовательно, sin (x + y) sin (xy) ≤ 0.

12.9. Вычислим а² + b²:

а² + b² = 2 + 2 (cos α cos β + sin α sin β) = 2 + 2 cos (α − β) = 4 cos² α − β/2. Теперь преобразуем правую часть равенства, которое нужно доказать:

что и требовалось доказать.

12.10. Обозначим sin² α = а, sin² β = b, sin² γ = с. Тогда данное в условии соотношение примет вид

т. е.

2abс + аb(1 − с) + (1 − а) + ас(1 − b) − (1 − а)(аb)(1 − с) = 0.

После того как будут раскрыты скобки и приведены подобные члены, получим

−1 + с + b + a = 0,

что в первоначальных обозначениях соответствует равенству sin² α + sin² β + sin² γ = 1.

12.11.

При преобразованиях мы пользовались формулами преобразования произведения тригонометрических функций в сумму.

Ответ. −3.

12.12. Так как

ctg α + ctg γ = 2 ctg β и β = π/2 − (α + γ),

то

Углы α и γ острые. Поэтому ctg α > 0 и ctg γ > 0 и на их сумму можно сократить:

откуда легко найти произведение котангенсов.

Ответ. 3.

12.13. Преобразуем данное выражение:

sin (90° + 16°) + cos (90° + 16°) ctg 8° = cos 16° − sin 16° ctg 8° = cos 16° − 2 sin 8° cos 8° cos 8°/sin 8° = cos 16° − 2 cos² 8° = cos 16° − (1 + cos 16°) = −1.






Для любых предложений по сайту: [email protected]