Сборник задач по математике с решениями - А. А. Рывкин, Е. Б. Ваховский 2003

Решения
Наибольшие и наименьшие значения

24.1. Так как sin x − cos² x − 1 = sin² x + sin x − 2 = (sin x + ½)² − 9/4, то функция достигает своего наименьшего значения при sin x + ½ = 0.

Ответ. x = (−1)k + 1 π/6 + πk.

24.2. Воспользуемся формулой преобразования произведения синусов

y = ½[cos π/6 − cos (4xπ/6)] = √3/4 − ½cos (4xπ/6).

Чтобы функция y достигла своего наибольшего значения, нужно положить cos (4xπ/6) = −1, откуда x = π/24 + π/4 (2n + 1) = πn/2 + /24. Наибольшее значение функции равно ymax = √3/4 + ½.

Ответ. При x = πn/2 + /24 ymax = √3/4 + ½.

24.3. Данную функцию можно записать в виде y = sin x cos x (cos² x − sin² x), после чего она легко преобразуется: 4y = 2 sin 2x cos 2x = sin 4x.

Ответ. ¼.

24.4. Запишем данное выражение в виде (x + y + 1)² + (x − 2)² − 3. Оно будет иметь наименьшее значение, если одновременно x − 2 = 0 и x + y + 1 = 0.

Ответ. −3 при x = 2.

24.5. Точки ±1 и ±2 разбивают числовую ось на пять интервалов, в каждом из которых нетрудно найти наименьшее значение y.

1. Если x ≤ −2, то y = x² − 1 + x² − 4 − x − 2 − x − 1 = 2x² − 2x − 8.

Абсцисса вершины параболы y = 2x² − 2x − 8 равна x = −b/2a = ½,

т. е. при x ≤ 2 мы находимся левее вершины, функция y на этом участке убывает, а потому наименьшее значение она принимает в самой правой точке интервала: x = −2, y = 4.

2. Если[23] −2 ≤ x ≤ −1, то легко проверить, что y = 4.

3. Если −1 ≤ x ≤ 1, то y = −2x² + 2x + 8.

Так как ветви параболы направлены вниз, то наименьшее значение нужно искать на концах интервала: при x = −1 мы уже видели, что y = 4; при x = 1, y = 8.

4. Если 1 ≤ x ≤ 2, то y = 2x + 6. Наименьшим будет значение в точке x = 1.

5. Если x ≥ 2, то y = 2x² + 2x − 2.

Абсцисса вершины этой параболы x = −½; она лежит левее точки x = 2. Следовательно, наименьшее значение достигается при x = 2, т. е. y = 10.

Ответ. ymin = 4 при −2 ≤ x ≤ −1.

24.6. Заменим a/x на сумму из семи одинаковых слагаемых, каждое из которых равно a/7x. К функции

x7 + a/7x + a/7x + a/7x + a/7x + a/7x + a/7x + a/7x

применим неравенство между средним арифметическим и средним геометрическим

Равенство достигается при

Ответ.

24.7. Если ввести углы x и y (рис. P.24.7), то по теореме синусов AB + BC + 2R(sin x + sin y) = 4R sin [π − α/2] cos [xy/2].

Наибольшее значение этого выражения достигается при cos [xy/2] = 1, т. е. при xy = 0. Так как x + y = π − α, то x = π/2α/2. Следовательно,

AB = ВС = 2R sin x = 2R cos α/2.

Ответ. 2R cos α/2.

24 . 8 . Если катеты основания обозначить через а и b, то боковая поверхность призмы равна

Нам известна площадь основания. Поэтому аb = 4. Преобразуем выражение для боковой поверхности так, чтобы участвовали только аb и а + b:

Мы получили монотонную функцию от а + b. Ее наименьшее значение достигается одновременно с наименьшим значением а + b. Поскольку а + b ≥ 2√ab = 4, то равенство достигается, если а = b = 2.

Ответ. 2.

24.9. Так как правильный шестиугольник и квадрат — фигуры центрально−симметричные, то центр вписанного в шестиугольник квадрата должен совпадать с центром шестиугольника. Пусть K (рис. P.24.9) — одна из вершин квадрата, а M — центрально−симметричная ей точка многоугольника.

Обозначим через α угол AOK. Тогда

По теореме синусов

Чтобы задача имела решение, должно быть OQOK, т. е. sin (30° + α) ≤ sin α. Так как угол а больше угла BOA, то α ≥ 60°. Кроме того, можно считать, что α ≤ 90°, т. е. 60° ≤ α ≤ 90°. Чтобы для этих углов выполнялось условие

sin (30° + α) ≤ sin α,

необходимо и достаточно, чтобы 75° ≤ α ≤ 90°. Из формулы для KO видно, что с увеличением α диагональ квадрата уменьшается. Следовательно, α нужно выбрать минимальным из возможных, т. е. α = 75°. Тогда

, а сторона квадрата равна KO √2.

Ответ.

24.10. Обозначим данную дробь через y. Поскольку дискриминант квадратного трехчлена, стоящего в знаменателе, меньше нуля, уравнения

равносильны. Чтобы x было действительным числом, необходимо и достаточно выполнение условия (3 − 4у)² − 4у(6у − 2) ≥ 0, т. е. 8у² + 16у − 9 ≤ 0. Ему удовлетворяют значения y, для которых −1 − √34/4y ≤ −1 + √34/4. Правый конец интервала и будет наибольшим значением дроби.

Ответ. √34/4 − 1.

24.11. Пусть а, b, с — ребра параллелепипеда. Тогда ограничения, указанные в условии задачи, запишутся в виде системы трех соотношений:

аbс = 7,2, аb + ас + ≤ 12, а + b ≥ 5.

Преобразуем второе соотношение, приняв во внимание, что а + b ≥ 5:

аb + ас + = аb + с(а + b) ≥ аb + 5с,

т. е. аb + 5с ≤ 12. Перепишем теперь первое соотношение в виде аb · 5с = 36. Чтобы решить систему неравенства и уравнения, отыщем точки пересечения прямой x + y = 12 с гиперболой xy = 36, где x = аb, y = 5с. Решая эту систему, найдем единственную точку x = y = 6. Отсюда легко следует, что системе, записанной вначале, отвечают лишь числа с = 6/5, аb = 6. Подставив эти значения во второе соотношение, получим а + b ≤ 5. Поскольку одновременно а + b ≥ 5 (третье соотношение), то а + b = 5 наряду с условием аb = 6.

Ответ. 2, 3, 6/5.

24.12. Преобразуем данную функцию следующим образом:

Второе слагаемое достигает своего наименьшего значения, когда его знаменатель максимален. Поскольку

|sin (α + x) sin (α − x)| = ½|cos 2x − cos 2α|,

то наибольшее значение этого выражения достигается при cos 2x = −1, если cos 2α ≥ 0, 0 < α ≤ π/4, и при cos 2x = 1, если cos 2α < 0, π/4 < α < π/2.

В первом случае x = π(2k + 1)/2, во втором x = πk. И в том и в другом случае первое слагаемое выражения (1) обращается в нуль. Следовательно, при 0 < α ≤ π/4 наибольшее значение функции равно 2 tg² α, а при π/4 < α < π/2 равно 2 ctg² α.

Ответ. 2 tg² α при 0 < α ≤ π/4, 2 ctg² α при π/4 < α < π/2·

24.13. Введем обозначения: arcsin x = α, arccos x = β. Поскольку α + β = π/2, то

α³ + β³ = (α + β)³ − 3αβ(α + β) = π³/8/2αβ.

Наименьшее значение данной функции соответствует наибольшему значению произведения αβ. Так как β ≥ 0, то наибольшее значение αβ следует искать при α > 0. В этом случае (α > 0, β > 0) можно записать, что

αβ ≤ (α + β/2)² = π²/16.

Наибольшее значение αβ достигается при α = β = π/4. Следовательно, наименьшее значение исходной функции достигается при x = 1/√2 и равно

π³/83π³/32 = π³/32.

Наименьшее значение произведения αβ, где β ≥ 0, достигается при условии, что α < 0, причем желательно, чтобы абсолютные величины α и β были наибольшими. При x = −1 будет α = −π/2, β = π. Именно в этой точке произведение αβ достигает минимума, так как α принимает минимальное, а β — максимальное из возможных значений. Итак, при x = −1 исходная функция имеет наибольшее значение

π³/8 + /2 π/2 π = 7π³/8.

Ответ. π³/32, 7π³/8.

24.14. Сделаем следующие преобразования:

y = 2 sin² x + 2 cos² x + 4(2 cos² x) − 2 sin 2x = 2 + 4(1 + cos 2x) − 3 sin 2x = 6 + 4 cos 2x − 3 sin 2x = 6 + 5(4/5 cos 2x3/5 sin 2x) = (см. указание I) = 6 + 5(sin φ cos 2x − cos φ sin 2x) = 6 + 5 sin(φ − 2x).

Поскольку min sin (φ − 2x) = −1, то min y = 6 − 5 = 1.

Ответ. 1.

24.15. Преобразуем данную систему к виду

или

Введем новые переменные:

x + 1/5 = s, y + 2/5 = t, z/12 = v, w − 1/12 = u. (4)

Тогда система примет вид

и для удовлетворяющих этой системе переменных нужно найти

min (y + w) = min (5t + 12u − 1). (8)

Обратим внимание на то обстоятельство, что (5) и (6) — уравнения окружностей радиуса 1. Поэтому можно положить:

s = sin α, t = cos α; v = sin β, u = cos β.

Тогда для левой части (7) получим

sin α cos β + sin β cos α = sin(α + β) ≤ 1. (9)

Учитывая соотношения (9) и (7) одновременно, получим

sin (α + β) = 1, т. е. α + β = π/2 + 2πk, (10)

или

sin α = cos β, cos α = sin β, (11)

s = u, t = v. (12)

Соотношение (7), которое преобразуется теперь в равенство, примет вид

u² + t² = 1. (13)

Нам нужно найти min (5t + 12u − 1). Воспользуемся соотношениями (11) и (12), в силу которых u = sin α, t = cos α. Тогда st − 12u − 1 = 13(5/13 − cos α − 12/13 sin³ α) − 1 = 13 cos (α + φ) − 1, где cos φ = 5/13, sin φ = 12/13. Поэтому min (5t − 12u − 1) = −14.

Ответ. −14.






Для любых предложений по сайту: [email protected]